
352 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

Online Approximation Scheme for Scheduling
Heterogeneous Utility Jobs in Edge Computing

Chi Zhang , Haisheng Tan , Senior Member, IEEE, Haoqiang Huang , Zhenhua Han ,

Shaofeng H.-C. Jiang , Guopeng Li , and Xiang-Yang Li , Fellow, IEEE, ACM

Abstract— Edge computing systems typically handle a wide
variety of applications that exhibit diverse degrees of sensitivity
to job latency. Therefore, a multitude of utility functions of the
job response time need to be considered by the underlying job
dispatching and scheduling mechanism. Nonetheless, previous
studies in edge computing mainly focused on optimizing a single
utility function across all jobs, e.g., linear, sigmoid, or the hard
deadline. In this paper, we design online job dispatching and
scheduling strategies in which different jobs can be categorized by
different non-increasing utility functions. Our goal is to maximize
the total utility of all scheduled jobs. We first prove that no
online deterministic algorithm could achieve a competitive ratio
better than the lower bound Ω(1√

ε
) under the (1 + �)-speed

augmentation model. We proceed to propose an online algorithm,
named as O4A, for handling jobs with heterogeneous utilities.
We prove that O4A is O(1

ε2
)-competitive. We also design its

distributed version, i.e., DO4A. We implement O4A and DO4A on
an edge computing testbed running deep learning inference jobs.
With the production trace from Google Cluster, our experimental
and large-scale simulation results indicate that O4A can increase
the total utility by up to 50% compared with state-of-the-art
methods. Besides, the performance loss of DO4A is only 2% com-
pared with O4A with a small communication overhead involved.
Moreover, both of our algorithms are robust to estimation errors
in job processing time and transmission delay.

Index Terms— Approximation algorithms, scheduling, edge
computing.

Manuscript received 24 November 2021; revised 22 May 2022 and 30 June
2022; accepted 11 July 2022; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor B. Ji. Date of publication 5 August 2022; date of
current version 16 February 2023. This work was supported in part by the
National Key Research and Development Program of China under Grant
2018YFB0803400, in part by the NSFC under Grant 62132009, in part
by the Key Research Program of Frontier Sciences (CAS) under Grant
QYZDYSSW-JSC002, in part by the Fundamental Research Funds for the
Central Universities at China, and in part by Peking University. A preliminary
version of this work titled “Online Dispatching and Scheduling of Jobs with
Heterogeneous Utilities in Edge Computing” was published in Proc. of the
21st International Symposium on Theory, Algorithmic Foundations, and Pro-
tocol Design for Mobile Networks and Mobile Computing (Mobihoc 2020),
Boston, MA, USA, October, 2020 [DOI: 10.1145/3397166.3409122]. (Corre-
sponding authors: Haisheng Tan; Xiang-Yang Li.)

Chi Zhang, Haisheng Tan, Guopeng Li, and Xiang-Yang Li are with
the LINKE Laboratory and the CAS Key Laboratory of Wireless-Optical
Communications, University of Science and Technology of China (USTC),
Hefei 230027, China (e-mail: gzhnciha@mail.ustc.edu.cn; hstan@ustc.edu.cn;
guopengli@mail.ustc.edu.cn; xiangyangli@ustc.edu.cn).

Haoqiang Huang is with the Department of Computer Science and Engineer-
ing, Hong Kong University of Science and Technology, Hong Kong, China
(e-mail: haoqiang.huang@connect.ust.hk).

Zhenhua Han is with Microsoft Research Asia (MSRA), Shanghai 200232,
China (e-mail: hzhua201@gmail.com).

Shaofeng H.-C. Jiang is with the Center on Frontiers of Com-
puting Studies, Peking University, Beijing 100871, China (e-mail:
shaofeng.jiang@pku.edu.cn).

Digital Object Identifier 10.1109/TNET.2022.3193381

I. INTRODUCTION

EMERGING applications in the era of 5G, such as vir-
tual/augmented reality and autonomous driving, require

low-latency access to powerful computation resources [2],
[3]. Edge computing is a promising technology by deploying
servers at the Internet edge. In essence, the computing para-
digm where mobile applications offload their latency-sensitive
jobs to nearby edge servers can greatly extend the capability of
mobile devices and enlarge the coverage of cloud computing.

In order to efficiently utilize the limited resources in edge-
clouds, one fundamental challenge lies in job dispatching
and scheduling, i.e., to decide 1) onto which edge server or
the remote cloud each job should be dispatched, and 2) in
which order jobs should be executed on a server. Dispatching
and scheduling are typically multi-objective, e.g., maximizing
the utilization of edge servers, maximizing the revenue of
the service providers, and/or minimizing the peak resource
demand. Most notably, the job response time (JRT, defined
as the interval between the job release and the arrival of
the computation result at the mobile device) is a principal
criterion for evaluating the QoS of latency-sensitive jobs in
edge computing. Therefore, we here focus on the problem of
maximizing the aggregated utility of all jobs with respect to
the JRT.

In edge computing, mobile applications from various users
might exhibit different levels of latency sensitivity. Accord-
ingly, resource allocation amounts to dispatching and schedul-
ing computational jobs with heterogeneous utility functions of
the JRT. Fig. 1 illustrates such an edge computing system.
Multiple small-scale edge servers are geographically dispersed
and inter-connected via high-speed local or metropolitan area
networks. Mobile devices can reach nearby edge servers with
low network latency, but can also deploy jobs to the remote
cloud via the Internet while suffering from larger transmission
delays. Different kinds of jobs arrive at the edge servers, which
employ diverse utility functions such as: linear, hard-deadline
(All-or-Nothing), and functions in-between, e.g., sigmoid. Pre-
vious works [4]–[7] were mainly dedicated to optimizing a
single utility function among all jobs. Nevertheless, varying
the utility function will differentiate scheduling disciplines,
and utility-agnostic schedulers might fail to maximize the
aggregate utility of all jobs. In addition, as edge servers are
typically scattered in different geographic locations, an effi-
cient distributed scheduler is admired.

In this paper, we study online dispatching and scheduling
of jobs with heterogeneous utility functions in edge-cloud

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 27,2023 at 15:30:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1160-5497
https://orcid.org/0000-0002-3133-1430
https://orcid.org/0000-0003-1497-6226
https://orcid.org/0000-0002-2880-7100
https://orcid.org/0000-0001-7972-827X
https://orcid.org/0000-0002-0713-8964
https://orcid.org/0000-0002-6070-6625

ZHANG et al.: ONLINE APPROXIMATION SCHEME FOR SCHEDULING HETEROGENEOUS UTILITY JOBS IN EDGE COMPUTING 353

Fig. 1. Illustration of an edge-cloud system with mobile devices, edge servers,
the remote cloud, alongside jobs with heterogeneous utility functions.

systems. We consider a general setting, where a set of online
jobs may arrive at arbitrary time in arbitrary order. Each
job is associated with a utility function, and different jobs
are allowed to have various utility functions. We adopt the
unrelated machine model, i.e., each job has machine-dependent
processing time on each server, and there is no relationship
between the job processing time on different servers. Our
goal is to maximize the total utility for all jobs. We use the
competitive ratio, the ratio of the offline optimal to our online
algorithm performance, as a metric to theoretically evaluate
our method. In [8], it was proven that no online algorithm
for the job dispatching and scheduling problem under the
unrelated machine model could have a bounded competitive
ratio, even when the utility functions are all linear. Therefore,
we adopt the speed augmentation model [9] by allowing the
edge servers to be (1 + ε) times as fast as in the optimal
offline algorithm, where ε is a small positive constant .1 Our
main contributions are summarized as:

• We formulate a general online job dispatching and
scheduling problem in edge computing, where
co-existing jobs may employ heterogeneous utility
functions. Additionally, the upload/download delay
and the unrelated-machine job processing time are
considered (Sec. III).

• For the problem hardness, we give a lower bound of
the competitive ratio of all online deterministic algo-
rithms as Ω(1√

ε
) under the (1 + ε)-speed augmentation

(Theorem 1).
• We further propose an online algorithm, named
O4A (standing for “One algorithm for All utility func-
tions”), and prove its competitive ratio as O(1

ε2). We also
devise its distributed version, i.e., DO4A, which can
achieve similar performance with an efficient querying
scheme to decrease the message complexity dramatically
(Sec. IV).

• We implement both O4A and DO4A on a small-scale
testbed consisting of 20 edge devices. Our experiments
show that O4A can increase the aggregate job utility
by up to 50% compared with state-of-the-art baselines.
Besides, the gap between O4A and the optimal solu-
tion is within 12%. Furthermore, the performance loss
of DO4A is only 2% compared with O4A, even when
one mobile device may communicate with a maximum
number of 5 servers (Sec. V).

1In practice, the speed augmentation analysis can be understood as follows:
the algorithm will achieve the theoretical performance as long as the capability
of servers is upgraded by a small factor ε.

• Based on extensive large-scale simulations on the pro-
duction trace from Google, we demonstrate that both
O4A and DO4A consistently outperform the baselines over
various workloads and parameters. Moreover, O4A and
DO4A are robust to estimation errors in job processing
time and communication delay (Sec. V).

II. MOTIVATION

A. Heterogeneous Utilities Co-Existing in Edge Applications

Latency is a critical criterion in edge applications, where
various job requests typically exhibit different sensitivity to
job response latency. We here adopt autonomous driving
to demonstrate the coexistence of heterogeneous utilities.
Autonomous driving can make use of edge computing to sup-
port demands with heterogeneous latency sensitivity, such as:

• Obstacle Detection: Autonomous vehicles need to col-
lect and analyze data from multiple sensors to detect
possible obstacles around vehicles. These tasks are
deadline-critical that impose strict requirements on the
response latency, e.g., 100 ms as mentioned in [10].
Its utility function can be represented with an All-or-
Nothing (AoN) function (as shown in Fig. 1).

• Driver Assistance: To improve driving safety, machine
learning techniques are used for assisting drivers to avoid
potential risks, which include fine-grained face recog-
nition [11], body pose estimation [12], semantic scene
perception, and driving state prediction [13]. The utility
function could be sigmoid-like, whose QoE is sensitive
to a range of latency [14].

• Data Preprocessing: Autonomous vehicles are estimated
to generate as much as 5 terabytes of data per hour [15].
Data preprocessing on the edge (e.g., compressing and
filtering) can be adopted to reduce the amount of data
transferred to the cloud data centers. Job completion time
is commonly used to measure its efficiency, which can be
modeled as optimizing a linear utility function.

In addition to autonomous driving, public edge-clouds might
need to support a wide range of applications, e.g., content
delivery, video streaming, and IoT analytics, which can employ
various sensitivity to latency. To efficiently utilize limited edge
resources, edge schedulers should allow edge applications
to express their utility functions w.r.t. response latency, and
exploit the heterogeneity when scheduling jobs.

B. Inefficiency of Existing Schedulers

Existing job schedulers that can be deployed on edge servers
are typically not aware of the coexistence of heterogeneous
utilities of applications, e.g., OnDisc [4] and Dedas [7].
We take the shortest job first (SJF) policy adopted by
OnDisc [4] as the example policy. In the following example,
we show that although SJF is the optimal policy on average
job response, however, it is inefficient when optimizing total
utility. As elaborated in Fig. 2, there are three jobs j1, j2 and j3
to be scheduled, all of which arrive at time 0. Their processing
time is p1 = 8, p2 = 10 and p3 = 12, respectively. Their
utility functions are g1(t) = 1, g2(t) = 1

1+et−14 and g3(t) =

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 27,2023 at 15:30:39 UTC from IEEE Xplore. Restrictions apply.

354 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

Fig. 2. Inefficiency of the SJF when heterogeneous utility functions coexist.{
1 t ≤ 25
0 t > 25

, which are constant function, sigmoid function

and AoN function, respectively. SJF will schedule them in
the order of j1, j2, j3 as shown in Fig. 2 (a) with a total
utility of 1.02. The optimal solution (shown in Fig. 2 (b)) is
in the order of j2, j3, j1 with a total utility of 2.98. Similarly,
the strategy optimized for deadline-sensitive jobs, e.g., earliest
deadline first (EDF), may prioritize deadline-sensitive jobs
too much and hurt the utilities of other jobs. In summary,
heterogeneous utility functions can appear simultaneously in
edge applications, while existing methods could not handle
them efficiently. In this work, we try to shed a light on this
problem with algorithm design and system implementation.

III. SYSTEM MODEL

A. Edge System

We consider an edge-cloud system with a set of servers
denoted as S, including a number of heterogeneous edge
servers and a remote cloud regarded as a special server with
long transmission latency but abundant computation capability.
We denote J as the set of jobs released from mobile devices.
In mobile application scenarios, mobile devices and jobs can
appear in arbitrary order and time, and one may assume no
prior information before the job release. To avoid migration
overhead, a server cannot migrate jobs to the others after the
job dispatching. Preemption is allowed so that an executing
job might be halted and resumed later.

1) Jobs: When a job i ∈ J is dispatched to server j ∈ S
after its release time denoted as ri, there is an upload delay
Δ↑

i,j to transmit its initial data. Similarly, there is a download
delay Δ↓

i,j to transmit the processing result from the server to
the mobile device. Therefore, job i cannot be ready to process
until time ri + Δ↑

i,j , i.e., the arrival time of job i on server j.
In addition, the job completion time is when job i completes its
processing at server j. Here, we adopt the unrelated machine
model. That is to say, the processing time of job i on server
j, denoted as pi,j , is not identical or related to its processing
time on other servers. We also assume jobs are independent of
each other. Finally, the job finish time, denoted as fj , is when
the computation result arrives at the mobile device after a
download delay. The job response time (JRT) of i, denoted
as ci, is defined as the interval between its release and finish,
e.g., ci = fi− ri. Since the cloud can be modeled as a special
server, we do not differentiate the cloud and the edge server
explicitly here. Note that the data transmission need not take
over the computation resource of servers. Thus, the server can
process other jobs during data transmission.

2) Utility Function: Each job i is released and associated
with a utility function with respect to its JRT, denoted as gi(ci).
As stated above, we consider heterogeneous utility functions
for our jobs. Different jobs could have different utility func-
tions to indicate their sensitivity to the JRT. Generally, a utility
function can be any non-increasing function, which means we
cannot gain a higher utility by postponing the job’s processing.
We also assume gi(ci) ≥ 0, ∀ci, i.e., completing a job will
never bring negative utility to the system.

B. Problem Formulation
With the aforementioned model, our problem is to design

online dispatching and scheduling strategies for jobs with
heterogeneous utilities to maximize the total utility, i.e.,∑

i∈J gi(ci).
Problem 1:

max
{xi,j(t)},{yi,j},{fi}

∑
i∈J

gi(ci), (1)

s.t. xi,j(t) ∈ {0, 1}, ∀i ∈ J , j ∈ S, t ≥ ri + Δ↑
i,j (2)

yi,j ∈ {0, 1}, ∀i ∈ J , j ∈ S (3)∑
i∈J

xi,j(t) ≤ 1, ∀j ∈ S, t ≥ ri + Δ↑
i,j (4)

∑
j∈S

yi,j = 1, ∀i ∈ J (5)

fi ∈
{
z

∣∣∣∣∣
∫ z−Δ↓

i,j

ri+Δ↑
i,j

xi,j(t)yi,jdt ≥ pi,j , ∀j ∈ S
}
,

∀i ∈ J , (6)

where yi,j is a binary variable that equals to 1 if the job i is
dispatched to the server j, and 0 otherwise. xi,j(t) is a binary
variable that equals to 1 if the server j is processing job i at
time t, and 0 otherwise. Eqn. (1) is the objective function that
maximizes the total utility of all jobs. Constraint (4) and (5)
guarantee each server only processes one job at any time,
and each job is dispatched to exactly one server, respectively.
Constraint (6) guarantees each job is processed for at least
pi,j time if it is finished.

Specifically, we study Problem 1 in an online mode. xi,j(t)
and yi,j can only be determined after time ri. The value of

pi,j , Δ↑
i,j , Δ↓

i,j and function gi(t) are agnostic before time ri.
We use the competitive ratio to analyze the online algorithm:

Definition 1 (Competitive Ratio): An online algorithm is
c-competitive if for any job set, we have OPT

ALG ≤ c, where
ALG denotes the utility gained by the online algorithm and
OPT denotes the total utility of the offline optimal solution.

C. Hardness

Problem 1 has been proved to be hard to achieve a
bounded competitive ratio even in its simplified version with
hard-deadline utility function across all jobs [16], we employ
the speed augmentation model in our analysis. Formally,
we define (1 + ε)-speed augmentation [9]:

Definition 2 (Speed Augmentation): A sever with
(1 + ε)-speed augmentation means that any job i only
takes pi

1+ε processing time, where pi is job’s processing time
on the original sever.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 27,2023 at 15:30:39 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ONLINE APPROXIMATION SCHEME FOR SCHEDULING HETEROGENEOUS UTILITY JOBS IN EDGE COMPUTING 355

For a constant c, (1 + ε)-speed c-competitive is defined as:
Definition 3 (Competitive Ratio with Speed Augmentation):

An online algorithm is (1 + ε)-speed c-competitive if for any
job set, we have OPT

ALG ≤ c, where ALG denotes the utility
gained by the online algorithm with (1 + ε)-speed and OPT
denotes the total utility of the offline optimal solution on the
original servers.

In this part, we prove the hardness of Problem 1 in the speed
augmentation model.

Theorem 1: For every ε ∈ (0, 1
2), all deterministic online

algorithms for Problem 1 are (1+ε)-speed Ω(1√
ε
)-competitive.

Proof: The hard instance is constructed as follows. We can
only take a single server in consideration and neglect the
upload and download delay. Then we study two types of jobs:

• Job j1: a big job with p processing time. Its utility

function is g1(t) =

{
p, t ≤ p

0, t > p
.

• Job j2: a small job with δ processing time. Its utility

function is g2(t) =

{
τδ, t ≤ δ

0, t > δ
, where τ =

√
1 + ε

ε(1 − ε)
.

Note that τδ is negligible compared to p. We release one
j1 at time 0 and release j2 one by one after time 0. Before
time 1−ε

1+εp, once the algorithm spends more than ε
1+εp time

in processing j2, we stop releasing j2. Then at time 1−ε
1+εp− δ,

we face two cases.
Case 1: the algorithm spends more than ε

1+εp time on j2.
Since j1 cannot complete before time p even with (1 + ε)
speed augmentation, the utility gained by the algorithm is ετp.
Because the adversary can process j1 only, it will earn the
utility p, thus the ratio between the adversary’s utility and the

algorithm’s utility is p
ετp =

√
1−ε
1+ε × 1

ε .
Case 2: the algorithm spends no more than ε

1+εp time on
j2. We first keep releasing j2. At time 1−ε

1+εp − δ, we stop
releasing j2 and release one j1. Since we can only guarantee
that one j1 can complete with p utility, the utility gained by
the algorithm is at most (1 + ετ)p. However, the adversary
can only process j2 before time 1−ε

1+εp− δ and start processing
the last j1 at its arrival, the utility gained by the adversary is
(1−ε
1+ε τ+1)p. We have the ratio between the adversary’s utility

and the algorithm’s utility is
(1−ε
1+ε τ+1)p

(1+ετ)p =
√

1−ε
1+ε × 1

ε . �

IV. THE O4A ALGORITHM

In this section, we present our online algorithm O4A,
to solve the joint dispatching and scheduling problem in edge
systems featuring jobs with heterogeneous utility functions.

A. General Idea

For each job dispatched to a server, O4A calculates its
tentative execution time and its tentative completion time,
so as to give a guide to conservatively make a scheduling
plan. In order to address the impact of potential preemption by
future jobs, when scheduling each job on a server, O4A adopts
a parameter to reserve more execution time. Given a job’s
utility function, O4A calculates the potential time intervals
on its dispatched server that can be used to execute this job.
At any time, O4A picks a job following the highest utility

density principle, defined as the potential utility divided by
the execution time. Moreover, when dispatching a job after its
release, O4A will select the edge server that can maximize the
job’s utility myopically, i.e., by assuming there will be no
future jobs. We next elaborate O4A in detail.

B. Tentative Execution
O4A leverages the speed augmentation parameter ε when

making scheduling decisions. Assuming the job i is dispatched
to server j, we define the job’s tentative execution time as
p†i,j = 1+βε

1+ε pi,j , which is a conservative processing time that
O4A allocates to the job i. Note that an online server with
speed augmentation (1+ ε), can complete job i after pi,j

1+ε time

units; the extra βε
1+εpi,j in p†i,j is the time reserved by O4A for

addressing potential preemption by future-arriving jobs. When
planning the job’s execution, O4A tentatively takes p†i,j as
the job’s processing time, and thus determines its tentative
completion time (denoted by d†i,j), i.e., the time when the job
i is processed for a duration of p†i,j .

C. Computing a Tentative Execution Plan
Here, we elaborate in Algorithm 1 how we calculate job i’s

tentative execution plan given that it is dispatched to server
j. We define Ii,j as job i’s executable time, i.e., the time
when server j schedules job i. If t /∈ Ii,j , server j will not
schedule job i at time t. Normally, the number of distinct
utility density is approximately equal to the number of queued
jobs. To reduce the positions where new jobs may be inserted,
we use logarithmic discretization to round the original utility
functions gi(t) to gD

i (t) (Line 2–2). As we will prove later,
this optimization does not hurt the asymptotic performance
of O4A, while the possible positions will be reduced to the
logarithm of the ratio of the maximum density to the minimum
density. We define the utility density of a job as its potential
utility under its tentative scheduling plan divided by its real
processing time (Line 6). In each server, O4A schedules jobs
following the highest utility density-first principle over all
unfinished jobs. Since a job’s utility density depends on its
tentative completion time d†i,j , Algorithm 1 computes the
minimum time d†i,j for job i, together with its executable time
Ii,j and its utility density ui,j (Line 8–21).

We enumerate the distinct utility density on server j in
ascending order, so as to compute the priority assigned to job
i. For the γ-th utility density uγ , we calculate job i’s tentative
completion time if job i is assigned with the γ-th priority
(Line 13–16). The case γ = 0 corresponds to the case that i
has the lowest priority, and thus it cannot preempt any other
jobs (Line 10–11). In the case γ > 0, we want to find out
all time intervals not occupied by jobs with a utility density
higher than uγ , i.e., J γ

Q. To achieve this, we use segment
tree optimization, maintaining a segment tree for each γ to
store all intervals with a utility density greater than uγ . After
establishing the segment trees, we can use binary search to
determine dγ

i,j . Since in the online scenario, the timeline will
be infinitely extended, we adopt timeline scrolling periodically,
which avoids frequent deletions on the segment trees caused
by job completion.

We define α as a preemption threshold: job i is placed at
the γ-th position when its utility density is higher than α times

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 27,2023 at 15:30:39 UTC from IEEE Xplore. Restrictions apply.

356 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

Algorithm 1 Tentative Schedule Planning

1 Input job i, server j;
2 α = 2 + 2

ε ;
3 λ†i (t) = arg maxλ{λ|pi,j · 2λ ≤ gi(t)};

4 gD
i (t) = pi,j · 2λ†

i (t);
5 JQ = the set of unfinished jobs at server j;
6 Define ui′,j = gD

i′ (d†i′,j + Δ↓
i′,j − ri)/pi′,j as the utility

density of job i′ ∈ JQ;
7 Let the distinct utility density in JQ be u1, u2, . . . , uK

(in ascending order);
8 The set of feasible tentative density U = ∅;
9 for γ = 0 to K do

10 if γ = 0 then
11 Iγ

i,j = {t : t ≥ ri + Δ↑
i,j , t /∈ ∪i′∈JQIi′};

12 else
13 iγ = the γ-th job in JQ;
14 J γ

Q = {i′ : i′ ∈ JQ, ui′,j > uγ};

15 Iγ
i,j = {t : t ≥ ri + Δ↑

i,j , t /∈ ∪i′∈J γ
Q
Ii′};

16 dγ
i,j = min{t| ∫ t

ri
1[t ∈ Iγ

i,j]dt ≥ p†i,j};

17 uγ
i,j = gD

i (dγ
i,j + Δ↓

i,j − ri)/pi,j;
18 if uγ

i,j > αui′,j for all i′ ∈ JQ − J γ
Q then

19 Add uγ
i,j to U ;

20 γ† = argmaxγ U ;

21 Ii,j = Iγ†
i,j ; d†i,j = dγ†

i,j ; ui,j = uγ†
i,j ;

Fig. 3. Tentative schedule computation for a newly released job (Job 4).

that of any other job with lower priorities. Namely, job i can
preempt jobs with lower priorities only if it has a high enough
utility density (Line 17–19). We assign job i with the priority
corresponding to the highest utility density (Line 20–21).

Fig. 3 illustrates how Algorithm 1 works. In the beginning,
there are 3 unfinished jobs on the server: Job 1, 2 and 3 in
ascending order of their utility density. Job 2 has a higher
density than Job 1, but less than α times, so Job 2’s executable
time cannot overlap with Job 1’s executable time. Similarly,
Job 3’s executable time cannot overlap with Job 2’s. As Job 3’s
utility density is higher than α times of Job 1’s, Job 3’
executable time can overlap with Job 1’s so that Job 3 can
preempt Job 1 when it arrives. When the newly released
Job 4 arrives, Algorithm 1 needs to compute the tentative
completion time by enumerating its potential priorities. When
γ = 0, Job 4 has the lowest priority so that it can only
start processing when all the other three jobs finish their
computation. When γ = 1, Job 4 may preempt Job 1 by
overlapping its executable time with Job 1’s, but still needs
to avoid overlapping with Job 2 and 3. When γ = 2, and
γ = 3, Job 4 can further consider preempting Job 2 and Job 3,

Algorithm 2 Dispatching and Scheduling Policy in O4A

1 Job Dispatching: When job i is released at time ri, it is
dispatched to server j = argminj′∈S{d†i,j′ + Δ↓

i,j′};
2 Determine the tentative finish time of job i:
fi = d†i,j + Δ↓

i,j ;
3 Job Scheduling: At time t, server j schedules the

executable job i with the highest utility density, i.e.,
i = arg max{i′|t∈Ii′,j} ui′,j ;

respectively. Job 4 will have different tentative completion
time, utility density, and executable time when it is placed on
different priorities. O4A will choose the one that maximizes
its utility.
D. Job Scheduling & Dispatching

Based on O4A’s tentative schedule planning, we elaborate
in Algorithm 2 how O4A dispatches and schedules newly
arriving jobs. When released, a job is dispatched to the server
that yields the highest utility under the tentative scheduling
(Line 1). Next, the tentative time of job i is calculated
(Line 2). On each server, O4A picks the executable job with the
highest utility density (a job is executable at the time t if and
only if t ∈ Ii,j) (Line 3). Note that, a job’s utility density
and executable time are decided by Algorithm 1 when its
dispatching decision is made and does not change afterward.

Time Complexity: Let K be the number of distinct utility
density after discrete optimization, which is the logarithm of
the ratio of the maximum density to the minimum density. Let
L be the maximum number of intervals among all jobs. Let T
be the length of the timeline. The time complexity to dispatch
each job in O4A is O(K · L · log2 T).

E. Competitive Analysis

We employ the speed-augmentation model, which means
that we compare the utility gained by our algorithm on servers
with (1+ ε) speed with the utility gained by an offline optimal
solution on original servers. By convention, we let ALG be
the total utility that O4A gets and let OPT denote the total
utility earned by the optimal solution computed offline. Let
OPTD be the optimal utility after discretization. Our analysis
is inspired by [17], and comprises three steps:

• Although O4A might not finish all jobs by the tentative
finish time, we lower-bound ALG by the total tentative
utility under the assumption that all jobs finish before
their tentative finish time (Lemma 1). The high-level idea
is to use the charging scheme to transfer utility from the
highest density job to other jobs in the solution of O4A,
so that all the jobs, including those finished later than
their tentative finish time, have a comparable utility to
their tentative utility.

• In Lemma 2 and Lemma 3, we upper-bound OPTD by
the cumulative tentative utility. To achieve this, we need
to prove for a fixed server j, the total utility of the jobs
O4A dispatched to server j is comparable to the total
utility of the optimal on server j, by calculating the
relationship of the total length of processing time of jobs
whose density is at least u of the optimal and O4A.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 27,2023 at 15:30:39 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ONLINE APPROXIMATION SCHEME FOR SCHEDULING HETEROGENEOUS UTILITY JOBS IN EDGE COMPUTING 357

• By combining Lemma 1, Lemma 2 and Lemma 3 we can
bound ALG by OPT , from which we get Theorem 2.

For ease of notation, we let fi � d†i,j + Δ↓
i,j , Ii � Ii,j be

the tentative finish time and tentative interval of job i if job i is
dispatched to server j, respectively. We let wD

i � gD
i (fi−ri)

be the discretized tentative utility, and let uD
i � wD

i

pi,j
be the

discretized tentative density. Finally, we denote the set of all
jobs by J , and use C for the set of jobs that finish prior to
their tentative finish time as calculated by O4A.

Lemma 1: The utility obtained from O4A is at least (1 −
1+βε

βε(α−1)) times the total utility if each job i was completed at

time fi, i.e., ALG ≥ (1 − 1+βε
βε(α−1))

∑
i∈J wD

i .
Proof: For each server j, we will use the charging scheme

to transfer utility among jobs. Let non-negative hin
i be the

utility transferred to job i and hout
i be the utility transferred

out from job i. For any time t and server j, let Xt,j be the set
of jobs whose tentative interval Ii contains t. The job i with
the highest density uD

i = wD
i

pi,j
in Xt,j transfers utility to other

jobs in Xt,j . Here, we define transfer speed as the amount of
utility transferred in a unit time. For each job i′ ∈ Xt,j −{i},

the transfer speed is set to (1+ε
βε) wD

i′
pi′,j

. Note that the total utility

of all jobs will not change, that is
∑

i∈J h
in
i =

∑
i∈J h

out
i .

Thus, we haveALG = ALG+
∑

i∈J hin
i −∑

i∈J hout
i . By the

definition of C and wD
i , we have ALG ≥ ∑

i∈C w
D
i . For each

job i that is not completed, there must be some more dense
jobs processing at least βε

1+εpi,j units of time in interval Ii.

That is hin
i ≥ 1+ε

βε · wD
i

pi,j
· βε

1+εpi,j = wD
i , i ∈ J − C. Thus,

we have
∑

i∈J−C h
in
i ≥ ∑

i∈J−C w
D
i .

By the definition of Ii, for any two jobs i and i′ assigned
to server j where Ii and Ii′ overlap, it must hold that either
uD

i > αuD
i′ or uD

i′ > αuD
i . Thus at any time t the speed of

utility transferred from job i is at most 1+ε
βε · wD

i

pi,j

∑∞
k=1

1
αk ≤

1+ε
βε(α−1) · wD

i

pi,j
. The total length of intervals in Ii is 1+βε

1+ε pi,j ,

thus hout
i ≤ 1+ε

βε(α−1) · wD
i

pi,j
· 1+βε

1+ε pi,j = 1+βε
βε(α−1)w

D
i .

That is
∑

i∈J h
out
i ≤ ∑

i∈J
1+βε

βε(α−1)w
D
i . Finally, we have

ALG ≥ ∑
i∈C w

D
i +

∑
i∈J−C w

D
i − 1+βε

βε(α−1)

∑
i∈J wD

i ≥(
1 − 1+βε

βε(α−1)

)∑
i∈J w

D
i , which concludes our proof. �

Now, we are going to upper-bound OPTD by the sum of
the tentative utility of all jobs, i.e.,

∑
i∈J wD

i . Let A∗
1 be the

set of jobs such that i ∈ A∗
1 implies that the tentative finish

time fi set by the algorithm is no later than f∗
i , i.e., the finish

time of job i in the optimal solution; let A∗
2 comprise the

remaining jobs. Besides, for a fixed server j, let A∗
1,j , A

∗
2,j

be the subsets of A∗
1, A

∗
2, respectively, which only consist of

jobs dispatched to server j in the optimal solution. We have
that the total utility of jobs in A∗

1 at the optimal solution is
less than

∑
i∈J wD

i . We next concentrate on bounding the
utility of jobs in A∗

2 of the optimal solution. For each server
j and u ≥ 0, let L∗

j (u) denote the total processing time of
jobs whose density is at least u and that is in set A∗

2,j in the
optimal solution’s scheduling. Let Lj(u

α) be the total length
of time where the algorithm processes a job with density at
least u

α on server j. For a set of intervals I, let L(I) be the
sum of the length of all intervals in I.

Lemma 2: For every server j and all u > 0, β ∈ (0, 1),
L∗

j(u) ≤ 2(1+ε)
(1−β)εLj(u

α).
Proof: Fix a server j. For each job i, we define an interval

[ri +Δ↑
i,j , f

∗
i −Δ↓

i,j], where ri is the release time of job i and
f∗

i is the finish time in the optimal scheduling. Let W ∗
j (u)

be the set of all the intervals of jobs with density at least u
in A∗

2. For ease of analysis, let Mj(u) be the minimal subset
of W ∗

j (u) whose intervals span every time contained in an
interval in W ∗

j (u). Then we can divide all the intervals of
Mj(u) into two sets, i.e., M1

j (u) and M2
j (u), each of which

does not have overlapping intervals. Without loss of generality,
we assume that the total length of time contained in an interval
of M1

j (u) is at least that of M2
j (u). Then we have the total

length of time contained in an interval of M1
j (u) is at least

half of that of W ∗
j (u), i.e., L(M1

j (u)) ≥ 1
2L(W ∗

j (u)).
According to the definition of tentative completion time,

for each job i in A∗
2, the total length of time where the

algorithm processes a job with density at least uD
i

α in the
interval [ri + Δ↑

i,j , f
∗
i − Δ↓

i,j] is at least (1−β)ε
1+ε [f∗

i − Δ↓
i,j −

(ri + Δ↑
i,j)]. Otherwise, the tentative completion time of job

i on server j calculated by O4A will be earlier than its
completion time in the optimal solution on server j, which
violates the assumption that job i belongs to A∗

2. Since M1
j (u)

does not have overlapping intervals, we have Lj

(
u
α

) ≥
(1−β)ε

1+ε L(M1
j (u)) ≥ (1−β)ε

2(1+ε)L(W ∗
j (u)). Furthermore, by def-

inition, we have L∗
j (u) ≤ L(W ∗

j (u)) ≤ 2(1+ε)
(1−β)εLj

(
u
α

)
. �

Lemma 3:
∑

i∈A∗
2
wD∗

i ≤ 2α(1+ε)
(1−β)ε

∑
i∈J wD

i .

Proof: Fix a server j. Let uD∗
i = wD∗

i /pi,j and uD
i =

wD
i /pi,j . Let A∗

2,j(u) denote the set of jobs in A∗
2 scheduled

to server j with density at least u in the optimal scheduling.
Let Aj(u) be the set of all jobs scheduled to server j with
density at least u in O4A. For ease of analysis, we sort the
jobs in A∗

2,j(0) from 1 to n (|A∗
2,j(0)| = n) by their densities

in the optimal scheduling with a non-increasing order.
In addition, we add a virtual job n + 1 with density 0 in

the end of the sequence for the ease of notation. According to
Lemma 2, for each i ∈ A∗

2,j(0) we have

∑
i′∈A∗

2,j(u
D∗
i)

pi′,j = L∗
j (u

D∗
i) ≤ 2(1 + ε)

(1 − β)ε
Lj(uD∗

i /α)

=
2(1 + ε)
(1 − β)ε

∑
i′∈Aj(uD∗

i /α)

pi′,j .

By using this inequality, we have

∑
i∈A∗

2,j(0)

wD∗
i

=
∑

i∈A∗
2,j(0)

pi,j

∑
i∈A∗

2,j(0),i′≥i

(uD∗
i′ − uD∗

i′+1)

=
∑

i∈A∗
2,j(0)

(uD∗
i − uD∗

i+1)
∑

i′∈A∗
2,j(0),i

′≤i

pi′,j

=
∑

i∈A∗
2,j(0)

(uD∗
i − uD∗

i+1)
∑

i′∈A∗
2,j(u

D∗
i)

pi′,j

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 27,2023 at 15:30:39 UTC from IEEE Xplore. Restrictions apply.

358 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

≤ 2(1 + ε)
(1 − β)ε

∑
i∈A∗

2,j(0)

(uD∗
i − uD∗

i+1)
∑

i′∈Aj(uD∗
i /α)

pi′,j

=
2(1 + ε)
(1 − β)ε

∑
i∈Aj(0)

pi,j

∑
i′∈A∗

2,j(0),u
D∗
i′ /α≤uD

i

(uD∗
i′ − uD∗

i′+1)

≤ 2(1 + ε)
(1 − β)ε

∑
i∈Aj(0)

pi,ju
D
i α =

2α(1 + ε)
(1 − β)ε

∑
i∈Aj(0)

wD
i .

Since ∪j∈SA∗
2,j(0) = A∗

2 and ∪j∈SAj(0) = J , we con-

clude that
∑

i∈A∗
2
wD∗

i ≤ 2α(1+ε)
(1−β)ε

∑
i∈J w

D
i . �

Based on the above lemmas, we conclude Theorem 2.
Theorem 2: For any ε ∈ (0, 1

2), O4A is (1 + ε)-speed
O(1

ε2)-competitive.
Proof: By using lemma 1 and 3, we have

OPTD =
∑

i∈A∗
1∪A∗

2

wD∗
i ≤

∑
i∈A1

wD
i +

2α(1 + ε)
(1 − β)ε

∑
i∈J

wD
i

≤ (1 +
2α(1 + ε)
(1 − β)ε

)
∑
i∈J

wD
i ≤

1 + 2α(1+ε)
(1−β)ε

1 − 1+βε
βε(α−1)

ALG.

Since all the utilities decrease by at most 1
2 of the original after

discretization, we have OPTD ≥ 1
2OPT . Using α = 2 +2/ε

and β ∈ (1
ε(α−2) , 1) we deduce OPT ≤ O

(
1
ε2

)
ALG. �

So far, we have proved a lower bound Ω(1√
ε
) and an upper

bound O(1
ε2) for the online job dispatching and schedul-

ing problem where jobs with heterogeneous utility functions
co-exist. In the proof of the lower bound, we only use a simple
case where only two types of jobs with one single server are
involved and the upload/download delay is not considered.
Finding a tighter lower bound is promising if more complex
cases (e.g., considering multiple servers and upload/download
delay) can be constructed. Nonetheless, this simple case can
somewhat reflect the nature of this problem, that is, our lower
bound justifies that the polynomial dependence on 1

ε in our
ratio is not avoidable, and this particularly means one cannot
improve this ratio significantly to, e.g., O(log 1

ε).

F. Distributed Implementation

The original version of O4A appears to be centralized.
However, since edge servers are usually scattered in different
geographic locations in real-world scenarios, a centralized con-
troller might be impractical for scheduling latency-sensitive
jobs even with remote clouds for coordinated management.
A trivially designed distributed algorithm may result in a large
amount of information exchange. Therefore, it requires a
special design to decide between which nodes the commu-
nication takes place to keep the original performance as much
as possible with low information exchange.

Based on the attributes of O4A, we devise an implementa-
tion in the distributed environment via the following 3 steps:
1) When job i is released at time ri, it sends request messages
with its job information to each possible server j ∈ S, except
the remote cloud server; 2) When server j receives the request
message from job i, it calculates the tentative finish time of
job i, using Algorithm 1; and 3) Job i picks the server with
the earliest tentative finish time for dispatching.

Algorithm 3 Distributed O4A

1 Input job i, maximum number of connected servers k;
2 Tentative finish time if job i is dispatched to cloud
fi,cloud = Δ↑

i,cloud + pi,cloud + Δ↓
i,cloud;

3 Let Si,k be the set of k edge servers with smallest
Δ↑

i,j + pi,j + Δ↓
i,j ;

4 for j ∈ Si,k do
5 Send request messages with its job information to

server j;
6 When server j receives the request message from job

i, it calculates the tentative finish time of job i using
Algorithm 1 and replies fi,j to the mobile device;

7 Job i is dispatched to server
j = arg minj′∈Si,k∪{cloud}{fi,j′};

Theoretically, this distributed method can achieve the same
competitive ratio as the centralized version if the latency of
querying a server’s status can be ignored; otherwise, any
algorithm that relies on the status of the server does not have
a bounded ratio, even under the speed augmentation model,
i.e., we can always construct some hard instance based on the
querying latency. However, simply using the above distributed
method will incur Θ(|S|) message complexity for each request
and will cause serious abuse of network resources, where |S|
is the number of edge servers in the system. Besides, the
dispatching decision is made after all the responses return
to the mobile device, which also slows down the dispatching
process, especially when the number of servers is large.

To make the distributed implementation practical, we take
advantage of the power-of-k choices [18]. That is, instead of
querying all servers, each request can only communicate with
k edge servers. For each job i, DO4A will pick at most k
edge servers with the minimum possible finish time. Here, the
minimum possible finish time for job i at server j is calculated
as Δ↑

i,j + pi,j + Δ↓
i,j . Furthermore, we avoid obtaining the

tentative finish time on the remote cloud server by communi-
cating with the cloud since it suffers from long communication
latency. Instead, as the remote cloud has abundant resources
compared with the edge, we choose to approximately estimate
its tentative finish time locally by assuming there is no queuing
delay but only upload/download delay and processing time.

The detail of distributed O4A (i.e., DO4A) is shown in
Algorithm 3. First, the mobile device calculates the tentative
finish time, fi,cloud, if job i is dispatched to the remote cloud
(Line 2). Then, the mobile device selects k edge servers with
the smallest Δ↑

i,j + pi,j + Δ↓
i,j as candidate servers (Line 3).

Afterward, the device sends the information of job i to each
candidate edge server j ∈ Si,k, including the upload/download
delay, the processing time, and the utility function (Line 5).
Each server calculates the tentative finish time of job i, i.e.,
fi,j , using Algorithm 1 and replies it to the mobile device
(Line 6). Finally, job i is dispatched to the server with the
smallest fi,j or fi,cloud if the remote cloud is chosen (Line 7).

In Algorithm 3, the message complexity for each request
can be Θ(k), where k is a small constant. Compared with
the original method of querying all servers, the message

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 27,2023 at 15:30:39 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ONLINE APPROXIMATION SCHEME FOR SCHEDULING HETEROGENEOUS UTILITY JOBS IN EDGE COMPUTING 359

complexity is drastically reduced (from Θ(|S|) to Θ(k)).
As we will illustrate in Sec. V, in most cases by setting k = 10,
DO4A can achieve almost the same performance as O4A, even
when there are totally hundreds of edge servers.

V. PERFORMANCE EVALUATION

We evaluate O4A and DO4A with production-trace driven
testbed experiments and large-scale simulations. By default,
we set ε = 0.02, α = 2 + 2

ε , β = 0.8 and k = 5. Overall, our
key findings are:

• In the testbed experiments running deep learning infer-
ence jobs, O4A performs 21% and 60% better than
OnDisc and Random, respectively, when there are mul-
tiple types of utility functions. Besides, the total utility
obtained by O4A is close to the optimal with a gap no
larger than 12%.

• When the job transmission time and processing time are
misestimated, O4A is more robust compared with the
baseline algorithms. In specific, the average utility is
degraded by at most 5% under 20% estimation error.

• The performance loss of DO4A is only 2% compared with
O4A, even when the number of connected servers k = 5.

• Extensive simulations show that both O4A and DO4A are
robust to various workload and parameter variations and
consistently perform better than state-of-the-art baselines.

A. Experimental Settings

1) Testbed Cluster: Our edge-cloud testbed consists of
20 workers: 10 Nvidia Jetson Nano’s and 10 Raspberry Pi 4b’s.
A DELL Precision 7920 Workstation is used as the scheduler
to manage the cluster. Each Nvidia Jetson Nano has 4 cores,
4 GB RAM, 16 GB storage and a Gigabit Ethernet port. Each
Raspberry Pi 4b has 4 cores, 1 GB RAM, 32 GB storage and
a Gigabit Ethernet port. The workstation has two Intel Xeon
Gold 6230 processors (each with 20 cores), 256 GB RAM
and a 4 TB SSD. We use MQTT v3.1.1 as the communication
protocol, which is widely used by IoT and mobile devices.

2) Workloads: We choose deep learning inference jobs as
our workloads to evaluate O4A and the baseline algorithms.
Table I lists the deep learning models of the jobs and their
performance on Nvidia Jetson Nano and Raspberry Pi 4b.
Specifically, each job requests to classify an image from
ImageNet [19] using one of the models listed in Table I. The
release time of jobs is set based on the trace of Google’s
production clusters [20]. In the testbed experiments, the
average job release rate is ∼15 jobs per second. Note that
since Nvidia Jetson Nano and Raspberry Pi 4b have different
hardware specifications and run different platform-optimized
inference engines, a job’s processing time can be different on
the two types of devices. This practical scenario fits in the
unrelated machine system model that allows heterogeneous
job processing time on different edge servers.

3) Utility Functions: To express jobs’ heterogeneous sensi-
tivity to JRT, each job is associated with a job-specific utility
function when it is submitted. Similar to [27], we adopt the
following functions in our experiments. When a job arrives,
we randomly choose a utility function in the following list with
equal probability (where parameters a, b, c below are selected
uniformly at random in their respective intervals).

TABLE I

INFERENCE TIME OF POPULAR ML MODELS

• Linear Function: g(t) = −at+ b, a, b > 0,
– we set a ∈ [10, 20], b ∈ [20, 100]

• All or Nothing (AoN) Function: g(t) =

{
a t < c

0 t ≥ c

– we set a ∈ [1, 100], c ∈ [0.5, 5]

• Sigmoid Function: g(t) =
b

ea(t−c) + 1
, a, b, c > 0

– we set a ∈ [1, 10], b ∈ [50, 100], c ∈ [0.5, 5]
Jobs with the linear utility are usually latency-sensitive whose
utility diminishes with longer JRT. A job associated with a
hard deadline can express its utility with an AoN function:
obtaining a utility of a if finished within its deadline c, and
0 else. The sigmoid utility can be viewed as a mix of the linear
and the AoN function, using a decay factor (i.e., a) to express
the latency-sensitivity.

4) Upload/Download Delay: In theoretical analysis,
we assume that the upload/download delays of all servers
are given. In testbed experiments, the delays are estimated
by testing Round-trip Time (RTT) per second. To flatten
the jitter of the network, we update the delays using
Δnew = γ ∗ Δold + (1 − γ) ∗ RTTnew/2, where γ is set to
0.9 by default.

5) Baselines: We compare O4A with the following
baselines:

• Random: dispatching jobs to servers randomly. On each
server, the job with the highest potential utility is picked
to process.

• OnDisc [4]: dispatching a job to the server which causes
the least increase in job completion time. On each
server, the scheduling discipline of the shortest remaining
processing time-first is followed.

• Upper Bound: For any job i, its possible utility can-
not exceed maxj∈S gi(pi,j + Δ↑

i,j + Δ↓
i,j), where only

the inevitable processing and communication time are
counted, whereas the possible queuing delay is ignored.
Therefore, an upper bound of the aggregate utility for all
jobs is

∑
i∈J maxj∈S gi(pi,j +Δ↑

i,j +Δ↓
i,j)), which helps

us assess how close each algorithm is to the optimal.

B. Testbed Experiment: Overall Comparison

1) Improvement on Utility: We first evaluate the overall
performance of O4A and compare it with Random, OnDisc
and Upper Bound. As mentioned above, the utility function
for each job is selected uniformly from linear, sigmoid and

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 27,2023 at 15:30:39 UTC from IEEE Xplore. Restrictions apply.

360 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

Fig. 4. Average utility and distribution of utility. (All utility functions.)

Fig. 5. Average JRT and distribution of JRT. (All utility functions.)

AoN functions. The experimental results are shown in Fig. 4,
which illustrates the average utility of all jobs as well as the
cumulative density function (CDF) for the utility each job
gains at the time of its completion. As shown in Fig. 4(a),
O4A can achieve about 21% and 60% higher utility than
OnDisc and Random, respectively. Besides, the utility loss
of DO4A compared with O4A is only 2%. Fig. 4(b) shows
that compared with Random and OnDisc, O4A achieves higher
utility on almost all percentiles. Furthermore, the gap between
O4A and the optimal solution (upper-bounded using Upper
Bound) is at most 12%, which reveals that the total utility
obtained by O4A is close to the optimal.

2) Improvement on Job Response Time: Fig. 5 presents the
overall JRT in the testbed experiment. Although OnDisc is
designed for optimizing JRT, the average JRT of O4A’s is
still 10% lower than OnDisc’s, cf. Fig. 5(a). Besides, the JRT
of DO4A is 4% higher than O4A’s. Inappropriate dispatching
caused by misestimation may result in unbalanced server load
and thus the server resources cannot be fully utilized, which
causes OnDisc’s degraded performance. O4A is more robust to
misestimation since it assigns each job with a larger tentative
interval, so that it can assure a higher probability of completion
at the expense of (slightly) lowering the tentative utility.
Fig. 5(b) shows the distribution of the job completion time.
Observe that O4A performs slightly worse than OnDisc on
short jobs, because OnDisc tends to favor more short jobs but
can starve long ones. Overall, O4A achieves comparable or bet-
ter performance compared with state-of-the-art JRT-optimized
algorithms. The problem we studied in this paper aims to
maximize overall utility. So, indeed there might be some jobs
never get served when the load exceeds the computational
resource of servers. In practice, jobs that miss their tentative
finish time (or jobs out of their tentative intervals) will be
set with a lower priority. When there are no jobs in their
tentative intervals at some point, jobs with lower priority will
be processed. And when the load of a server is high, i.e.,
lots of jobs are queuing in this server, subsequent requests
will be forwarded to other servers or the remote cloud to
mitigate the load on this server. That is, jobs with lower utility

Fig. 6. Average utility and distribution of utility. (Linear utility only.)

Fig. 7. Average utility and distribution of utility. (AoN utility only.)

Fig. 8. Average utility and distribution of utility. (Sigmoid utility only.)

will finally be served. The experimental results also show that
there is almost no job with an extremely large response time.
Furthermore, to achieve better fairness, a fairness knob can be
added to the algorithm just like what has been done in [28].

C. Testbed Experiment: Understanding Utility Functions
To study the impact of different types of utility functions,

we conduct several experiments. In each experiment, we set
a job’s utility function to a specific type and measure the
performance of all algorithms.

1) Impact of Linear Function: Fig. 6 shows the average
utility of all algorithms and their distribution in the experiment
that only submits jobs with linear utility functions. As we can
see, the curves of OnDisc and O4A are very close to the CDF
curve of Upper Bound. More specifically, OnDisc, O4A and
DO4A can achieve about 17%, 16% and 14% more utility than
Random, and gains 97%, 96% and 93% average utility of
Upper Bound, respectively. This is because OnDisc performs
the shortest job first strategy, which is actually achieving the
same target as the linear utility function.

2) Impact of AoN Function: Fig. 7 shows average utility
and utility CDF for all algorithms when only submitting
jobs with AoN utilities. O4A achieves not only higher utility,
but also a substantially lower deadline miss ratio (i.e., the
ratio of jobs with zero utility). In Fig.7(b), the percentage
of jobs with non-zero utility is exactly the deadline miss
ratio: O4A and DO4A only miss 7% and 10% job deadlines,
respectively, while OnDisc and Random miss 27% and 52%
jobs, respectively. Since both baseline algorithms are deadline-
agnostic (they only seek to optimize job completion time), they

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 27,2023 at 15:30:39 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ONLINE APPROXIMATION SCHEME FOR SCHEDULING HETEROGENEOUS UTILITY JOBS IN EDGE COMPUTING 361

Fig. 9. Sensitivity analysis: (a) Impact of job release rate. (b) Impact of the number of servers. (c) Impact of the misestimation.

Fig. 10. Impact of some parameters. (a) Impact of parameter ε. (b) Impact of parameter β. (c) Impact of parameter α on the number of preemptions.

may waste workers’ time in processing jobs whose deadline
can hardly be satisfied.

3) Impact of Sigmoid Function: Fig. 8 shows the average
utility and utility CDF for all algorithms when only submit-
ting jobs with sigmoid utility functions. The two baseline
algorithms perform much worse on sigmoid utility functions,
compared with linear and AoN functions: O4A achieves 86%
and 41% higher utility than Random and OnDisc, respectively.
The degraded performance of the two baselines is mainly due
to the non-linearity of the sigmoid utility function. It should
be noted that the utility gained by DO4A is only 94% of
O4A, and the reason for the relatively poor performance of
DO4A under non-linear utility functions may require more
detailed exploration.

D. Large-Scale Simulations

We conduct sensitivity studies by large-scale simulations
in a cluster of 300 edge servers based on production traces.
Specifically, we investigate the impact of the job release
rate, the number of edge servers, the misestimation of job
information, the speed augmentation parameter ε and α, and
the number of connected servers of mobile devices.

1) Impact of Job Release Rate: We present the trend with
rate changes in Fig. 9(a), by increasing the job release rate
from 20 to 200. Due to limited resources, the average utility
gradually decreases with the increase of job release rate, for
all algorithms. However, the decrease in average utility that
O4A experiences is slower than OnDisc’s, i.e., we deduce
that O4A schedules jobs more efficiently when cluster load
becomes heavier. Besides, no matter how the job release rate
changes, the performance of DO4A is always kept near O4A’s.

2) Impact of the Number of Edge Servers: Fig. 9(b) shows
the trend of the average utility with a variable number of
edge servers. All algorithms benefit from adding edge servers.

Random only obtains a marginal increase on the average
utility, while OnDisc, O4A and DO4A attain higher gains.
Similar to the result of the impact of job release rate, the
performance of DO4A is still closed to O4A’s under any
number of servers.

3) Impact of Inaccurate Estimation: In an actual production
environment, it is hard to acquire an accurate estimation of
the job processing time or the transmission delay. Fig. 9(c)
investigates the impact of misestimation, where a scheduler
knows the estimated job processing time p̂i,j , estimated upload
delay Δ̂↑

i,j , estimated download delay Δ̂↓
i,j and the estimated

error bound δ. The true values of pi,j ,Δ
↑
i,j ,Δ

↓
i,j are in the

range of [(1−δ)p̂i,j , (1+δ)p̂i,j], [(1−δ)Δ̂↑
i,j , (1+δ)Δ̂↑

i,j], [(1−
δ)Δ̂↓

i,j , (1+δ)Δ̂↓
i,j], respectively. We vary the value of δ from

0 to 0.2. When O4A undertakes scheduling decisions based on
p̂i,j , Δ̂

↑
i,j , Δ̂

↓
i,j , it is heavily impacted by increasing estimation

errors. To obtain a more robust method, we apply O4A and
DO4A using a conservative estimate of job processing time and
transmission delays, i.e., (1 + δ)p̂i,j ,(1 + δ)Δ̂↑

i,j ,(1 + δ)Δ̂↑
i,j .

The simulation shows that this improvement indeed renders
O4A and DO4A more robust to estimation errors, even when
the misestimation is up to 20%.

4) Impact of the Speed Augmentation Parameters: In
Fig. 10(a), we study the impact of varying the speed aug-
mentation parameter ε from 0 to 0.1. We unravel that alter-
ing the value of ε has little impact on the performance of
O4A and DO4A. Recall that O4A’s parameter α = 2+ 2

ε , tends
to infinity as ε → 0, which corresponds to never preempting
any job. This motivates the effect of choosing ε > 0 so as
to prevent O4A from becoming a non-preemptive scheduler.
In Fig. 10(b), we look into the impact of parameter β, which
determines the length of extra time of tentative intervals. Note
that in theoretical analysis, the range of β is (1

ε(α−2) , 1). Here,
we derive from the experiment that the performance of O4A is

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 27,2023 at 15:30:39 UTC from IEEE Xplore. Restrictions apply.

362 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

Fig. 11. Impact of the number of connected servers.

Fig. 12. Impact of query latency.

nearly insensitive to the value of β even when β is out of
the theoretical valid interval. The reason is that in practice
appropriate values of β can yield roughly accurate utility
estimates and thus relatively better results. However, setting
β = 0 will result in a poor performance, which indicates the
importance of the existence of extra time. We also investigate
the change of the number of preemptions as parameter α
increases, cf. Fig. 10(c). As we can see, the decline rate of
the number of preemptions starts to slow down when α is
greater than 20. Intuitively, the number of preemptions will
finally drop to 0 as α → ∞. From this perspective, when
the penalty of preemption cannot be ignored, the value of α
should be set to a number greater than 20 (corresponding to
ε < 0.05) in order to reduce the preemption penalty. We also
found that with the increase of α, the preemption frequency of
DO4A decreases more slowly than that of O4A, as the server
candidates in DO4A are limited to a maximum number of k.

5) Impact of k in the Distributed Implementation: In the
design of DO4A, we restrict the number of servers that each
mobile device can communicate with to a constant k to reduce
the message complexity. In Fig. 11 we show the impact if we
change the parameter k. As we can see, when we set k =
1, i.e., the case that all mobile devices only selfishly send
requests to the server with the shortest possible finish time,
the performance of DO4A is much worse than OnDisc. The
performance of DO4A approaches close to the performance of
O4A when k = 5 and almost the same with O4A’s performance
when k ≥ 10, where the total number of edge servers in the
system can be as large as 300.

6) Impact of Querying Latency: When the querying latency
of DO4A is 0, DO4A has the same competitive ratio as O4A.
Here, we show the tendency when the querying latency gets
larger (Fig. 12), where the job release rates are set to 20,
50 and 100 per second, respectively. When the querying
latency is less than 50ms, the performance loss of DO4A is
small. And when the querying latency is greater than 50ms,
the magnitude of the performance degradation with increasing
querying latency begins to increase. This phenomenon is more
obvious when the load is heavy, which may cause more jobs

to miss their deadlines. Despite this, the performance loss of
DO4A is less than 2% even when the query latency is 100ms.

VI. DISCUSSION

A. Infrequent Job Switching

For any preemptive scheduling algorithm, job switching
incurs a certain degree of switching overhead according to
its execution environment (the overhead due to CPU context
switching). For this reason, it is imperative that the scheduling
algorithm avoid frequent switching when the switching over-
head is high. Recall that O4A uses a preemption knob α to
control the preemption threshold, which means that a job can
preempt other jobs only when its density is high enough. Thus,
by properly choosing the preemption knob α, O4A can adjust
its switching frequency taking into consideration the switching
overhead.

B. Robustness to Misestimation

The processing time and transmission delay of jobs in a
production environment cannot be perfectly estimated; any
scheduling algorithm that relies on accurate knowledge of
the job processing/transmission time could make inefficient
decisions when agnostic to the estimation error. Therefore,
it is instrumental that the scheduling algorithm is aware of
and robust to estimation errors. In Sec. V-D.3, we evaluate the
impact of estimation error and show that a simple modification
to O4A greatly improves its robustness. It is interesting to
theoretically study the impact of estimation error on O4A’s
competitive ratio, which will be a focal point for future
research.

C. Comparison With Utility-Specific Algorithms
O4A is designed to maximize the utility for general het-

erogeneous utility functions (i.e., heterogeneous jobs co-exist
and each job may choose a different type of utility function).
Scheduling jobs with a specific utility function is also an
interesting topic to study. To the best of our knowledge,
scheduling deadline-aware jobs [16], [29]–[32] is the most
common setting besides general utility functions. In the
deadline-aware model, a fixed utility can be earned if a job
is finished before its deadline, and otherwise, the utility is
zero, called All-or-Nothing (AoN) utility function. To max-
imize the total AoN utility, Sanjoy et al. [16], [29], [30]
proposed an O(K)-competitive deterministic algorithm, where
K is the ratio of the maximum to the minimum job
density. The algorithm is later improved to be a ran-
domized O(min{logK, logψ})-competitive algorithm by
Gilad et al. [31] and Bala et al. [32], where ψ is the ratio
of the maximum to the minimum job size. All the above
ratios are derived without speed augmentation. Specifically,
our evaluation based on production traces reveals that O4A can
achieve comparable performance to these algorithms designed
for AoN utility on scheduling deadline-aware jobs. So far,
there is no study related to scheduling jobs with the same
type of utility function under the speed augmentation model.
We propose this as a future research direction. And some
previous results concerning response time minimization as
OnDisc [4] may shed some light on this problem.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 27,2023 at 15:30:39 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ONLINE APPROXIMATION SCHEME FOR SCHEDULING HETEROGENEOUS UTILITY JOBS IN EDGE COMPUTING 363

TABLE II

RELATED WORKS ON ONLINE SCHEDULING

VII. RELATED WORK

A. Classic Online Scheduling

Designing online scheduling algorithms for utility maxi-
mization has been studied for decades. One typical setting
is that each job arrives online with a utility and a dead-
line. In the case of a single server and preemption allowed,
Sanjoy et al. [16], [29], [30] conducted a series of influential
works, where they resolved the problem complexity and fig-
ured out the optimal deterministic online algorithm. However,
the competitive ratio depends on the instance of the set
of jobs and can be extremely large. Gilad et al. [31] and
Bala et al. [32] employed the power of randomization and
the randomized competitive ratio is still related to the input
instance. When scheduling on m servers, Samin et al. [39]
presented a lower bound c(ε,m) of the competitive ratio of any
deterministic online algorithm for the problem with ε ∈ (0, 1]
if the preemption is not allowed. Due to this lower bound,
some works [17], [38], [40], [41] resorted to the resource
augmentation analysis, which means the servers running their
algorithms can be (1+ε) faster than those running the optimal
solution. In this line of work, Krik et al. [38] constructed
a (1 + ε)-speed O(1

ε3) competitive algorithm for any fixed
constant ε > 0 under the identical severs setting. Consider-
ing the complexity of jobs, Agrawal [42] studied a setting
where each job can be represented as a Directed Acyclic
Graph (DAG) and proposed a O(1)-competitive algorithm
under speed augmentation analysis. Bao et al. [43] studied
online job scheduling in one ML cluster to maximize the
overall utility of all jobs. A recent result from Im et al. [17]
revealed that there is a (1 + ε)-speed O(1

ε2) online algorithm
in the unrelated server setting. We leverage similar ideas
but consider a more general model with job upload and
download delay. Moreover, we here derive a lower bound of
the competitive ratio. In O4A, we further introduce techniques
of logarithmic discretization, segment tree optimization, and
timeline scrolling to achieve a low time complexity. To the
best of our knowledge, O4A is the first practical algorithm to
schedule jobs with heterogeneous utilities in edge computing.

Besides utility maximization, cost minimization is also an
important objective in online scheduling. When all cost func-
tions are linear, the problem is also known as weighted flow
time minimization scheduling, which has been well studied.

Leonardi and Raz [33] initiated the study on identical servers
and showed that Shortest Remaining Processing Time (SRPT)
algorithm has a competitive ratio of O(log(min(n

m , P))),
where n, m and P are the number of jobs, the number of
servers and the ratio of largest processing time to the smallest
processing time, respectively. Azar et al. [44] considered the
problem of online scheduling on a single machine in order to
minimize weighted flow time with uncertain processing time
and the proposed algorithms match the best-known competi-
tiveness bounds. Han et al. [45] investigated gang scheduling
with job placement, where all the workers must be allocated
and scheduled synchronously. A series of works [46], [47] then
improved the algorithm by providing more practical models
while preserving the competitive ratio. Garg and Kumar [34]
were the first to extend the problem on related servers, a setting
where each server i has a speed si. Still considering weighted
flow time minimization, they showed an algorithm with
competitive ratio O(log2 P). However, the same authors [8]
later showed no competitive algorithm is possible for unre-
lated servers even considering linear cost functions only.
Thus, Garg et al. [9] resorted to speed augmentation analysis
and figured out a (1 + ε)-speed O((1 + ε−1)2)-competitive
algorithm for weighted flow time minimization. Unlike the
exploration in the field of weighted flow time minimization,
researchers made slow progress on the general cost function.
Bansal and Pruhs [36] studied this problem with polynomial
cost functions on a single server and showed a (1 + ε)-speed
O(1

εk)-competitive algorithm, where k is the degree of the
polynomials. Im et al. [37] extended the result by considering
cost minimization on a single server with non-decreasing
functions. We categorize the above works in Table II.

B. Online Scheduling in Edge-Cloud Systems

Since resources in edge servers are relatively limited, exten-
sive studies focus on resource management and load balancing
in edge computing. With the practical assumption that user
locations might keep changing, Urgaonkar et al. [48] modeled
the workload scheduling problem as Markov Decision Process
and adopted Lyapunov optimization to solve the problem.
Tong et al. [49] designed a tree hierarchical edge-cloud and
proposed an efficient heuristic workload dispatching pol-
icy to offload the workload. More recently, Meng et al. [7]
took the network bandwidth into consideration and proposed

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 27,2023 at 15:30:39 UTC from IEEE Xplore. Restrictions apply.

364 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

a deadline-aware job dispatching strategy. Zhou et al. [50]
considered a penalty function that characterizes the cost of
violating the soft deadlines for cloud resource provisioning.
Wang et al. [51] formulated the dynamic resource configura-
tion as a multi-period online cost minimization problem, and
proposed an online mean field aided resource configuration
policy. All the aforementioned works rely on stochastic opti-
mization and assume that the job releasing pattern follows
some specific distribution, which might not hold in practice.
Instead, Tan et al. [4] investigated online job dispatching and
scheduling in edge computing, where jobs arrive at arbitrary
time and order. They proposed an efficient online algorithm
with a competitive ratio of O(1

ε) under the (1 + ε)-speed
augmentation model. Liu et al. [52] studied task placement
and scheduling when there are dependencies between tasks.
As stated above, previous works mainly focused on a single
specific metric. However, in practice, a variety of applications
can co-exist, which employ different optimizing metrics, i.e.,
to indicate their different levels of sensitivity to latency.
Therefore, to capture realistic scenarios in edge computing,
in this work, we investigate jobs of heterogeneous utilities,
where the utility can be any non-increasing function of the
JRT, not necessarily linear or convex, and more importantly
jobs with heterogeneous utilities functions are allowed to
co-exist in the system.

VIII. CONCLUSION

Motivated by real applications, we studied online dispatch-
ing and scheduling of jobs with heterogeneous utility functions
in edge computing. We have obtained a lower bound Ω(1√

ε
)

and an upper bound O(1
ε2) for this problem, both under the

(1 + ε)-speed augmentation model. We also extended our
algorithm O4A to its distributed version, i.e., DO4A, which
reduces the communication complexity while maintaining the
original characteristics. Our testbed experiments and extensive
production trace-driven simulations illustrate that O4A can
increase the total utility by up to 50% compared with state-
of-the-art baselines, while also achieving comparable or better
average job response time and deadline miss ratio. And
the performance loss of DO4A is only 2% compared with
O4A. Besides maximizing the aggregate utility of all jobs,
an interesting point of future work remains to incorporate
fairness in job scheduling. Besides, in light of the fact that
acquiring accurate information on job processing time is
difficult (due to the unpredictable contention on computation
and communication resources), another meaningful extension
is to theoretically analyze the impact of estimation error on
the performance of the dispatching and scheduling strategies.

REFERENCES

[1] C. Zhang et al., “Online dispatching and scheduling of jobs with
heterogeneous utilities in edge computing,” in Proc. 21st Int. Symp.
Theory, Algorithmic Found., Protocol Design Mobile Netw. Mobile
Comput., Oct. 2020, pp. 101–110.

[2] L. Liu et al., “Cutting the cord: Designing a high-quality untethered VR
system with low latency remote rendering,” in Proc. Mobicom, 2018,
pp. 68–80.

[3] J. Feng, Z. Liu, C. Wu, and Y. Ji, “AVE: Autonomous vehicular edge
computing framework with ACO-based scheduling,” IEEE Trans. Veh.
Technol., vol. 66, no. 12, pp. 10660–10675, Dec. 2017.

[4] H. Tan, Z. Han, X.-Y. Li, and F. C. M. Lau, “Online job dispatching
and scheduling in edge-clouds,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), May 2017, pp. 1–9.

[5] H. Shah-Mansouri and V. W. S. Wong, “Hierarchical fog-cloud com-
puting for IoT systems: A computation offloading game,” IEEE Internet
Things J., vol. 5, no. 4, pp. 3246–3257, Aug. 2018.

[6] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser, “Service entity
placement for social virtual reality applications in edge computing,” in
Proc. INFOCOM, Apr. 2018, pp. 468–476.

[7] J. Meng, H. Tan, X.-Y. Li, Z. Han, and B. Li, “Online deadline-
aware task dispatching and scheduling in edge computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 31, no. 6, pp. 1270–1286, Jun. 2019.

[8] N. Garg and A. Kumar, “Minimizing average flow-time: Upper and
lower bounds,” in Proc. 48th Annu. IEEE Symp. Found. Comput. Sci.
(FOCS), Oct. 2007, pp. 603–613.

[9] J. S. Chadha, N. Garg, A. Kumar, and V. Muralidhara, “A competitive
algorithm for minimizing weighted flow time on unrelated machines
with speed augmentation,” in Proc. STOC, 2009, pp. 679–684.

[10] S.-C. Lin et al., “The architectural implications of autonomous driving:
Constraints and acceleration,” ACM SIGPLAN Notices, vol. 53, no. 2,
pp. 751–766, 2018.

[11] F. Vicente, Z. Huang, X. Xiong, F. D. L. Torre, W. Zhang, and D. Levi,
“Driver gaze tracking and eyes off the road detection system,” IEEE
Trans. Intell. Transp. Syst., vol. 16, no. 4, pp. 2014–2027, Aug. 2015.

[12] D. Sadigh et al., “Data-driven probabilistic modeling and verification of
human driver behavior,” in Proc. AAAI Spring Symp., 2014, pp. 1–8.

[13] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of driving
models from large-scale video datasets,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2174–2182.

[14] X. Zhang, S. Sen, D. Kurniawan, H. Gunawi, and J. Jiang, “E2E:
Embracing user heterogeneity to improve quality of experience on the
web,” in Proc. ACM SIGCOMM, 2019, pp. 289–302.

[15] R. Miller. (2020). Rolling Zettabytes: Quantifying Data Impact Con-
nected Cars. [Online]. Available: https://datacenterfrontier.com/rolling-
zettabytes-quantifying-the-data-impact-of-connected-cars/

[16] S. Baruah et al., “On the competitiveness of on-line real-time task
scheduling,” Real-Time Syst., vol. 4, no. 2, pp. 125–144, Jun. 1992.

[17] S. Im and B. Moseley, “General profit scheduling and the power
of migration on heterogeneous machines,” in Proc. 28th ACM Symp.
Parallelism Algorithms Architectures, Jul. 2016, pp. 165–173.

[18] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 10,
pp. 1094–1104, Oct. 2001.

[19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. CVPR, Jun. 2009,
pp. 248–255.

[20] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
Format + schemam,” Google, Mountain View, CA, USA, Tech. Rep.,
Nov. 2011. [Online]. Available: https://github.com/google/cluster-data

[21] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

[22] A. G. Howard et al., “MobileNets: Efficient convolutional neural net-
works for mobile vision applications,” 2017, arXiv:1704.04861.

[23] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen, “MobileNetV2: Inverted residuals and linear bottlenecks,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, Jun. 2016, pp. 770–778.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in Proc. ECCV, 2016, pp. 630–645.

[26] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50X fewer
parameters and ≤0.5 MB model size,” 2016, arXiv:1602.07360.

[27] L. Chen, W. Cui, B. Li, and B. Li, “Optimizing coflow completion
times with utility max-min fairness,” in Proc. 35th Annu. IEEE Int.
Conf. Comput. Commun. (INFOCOM), Apr. 2016, pp. 1–9.

[28] Z. Han, H. Tan, X.-Y. Li, S. H.-C. Jiang, Y. Li, and F. C. M. Lau,
“OnDisc: Online latency-sensitive job dispatching and scheduling in
heterogeneous edge-clouds,” IEEE/ACM Trans. Netw., vol. 27, no. 6,
pp. 2472–2485, Dec. 2019.

[29] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and
D. Shasha, “On-line scheduling in the presence of overload,” in Proc.
32nd Annu. Symp. Found. Comput. Sci., 1991, pp. 100–110.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 27,2023 at 15:30:39 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ONLINE APPROXIMATION SCHEME FOR SCHEDULING HETEROGENEOUS UTILITY JOBS IN EDGE COMPUTING 365

[30] G. Koren and D. Shasha, “Dover: An optimal on-line scheduling algo-
rithm for overloaded uniprocessor real-time systems,” SIAM J. Comput.,
vol. 24, no. 2, pp. 318–339, 1995.

[31] G. Koren and D. Shasha, “MOCA: A multiprocessor on-line compet-
itive algorithm for real-time system scheduling,” Theor. Comput. Sci.,
vol. 128, nos. 1–2, pp. 75–97, Jun. 1994.

[32] B. Kalyanasundaram and K. Pruhs, “Fault-tolerant real-time scheduling,”
Algorithmica, vol. 28, no. 1, pp. 125–144, Sep. 2000.

[33] S. Leonardi and D. Raz, “Approximating total flow time on parallel
machines,” in Proc. STOC, 1997, pp. 1–10.

[34] N. Garg and A. Kumar, “Minimizing average flow time on related
machines,” in Proc. 38th Annu. ACM Symp. Theory Comput. (STOC),
2006, pp. 730–738.

[35] S. Anand, N. Garg, and A. Kumar, “Resource augmentation for weighted
flow-time explained by dual fitting,” in Proc. 23rd Annu. ACM-SIAM
Symp. Discrete Algorithms, Jan. 2012, pp. 1228–1241.

[36] N. Bansal and K. R. Pruhs, “Server scheduling to balance priorities,
fairness, and average quality of service,” SIAM J. Comput., vol. 39,
no. 7, pp. 3311–3335, Jan. 2010.

[37] S. Im, B. Moseley, and K. Pruhs, “Online scheduling with general cost
functions,” SIAM J. Comput., vol. 43, no. 1, pp. 126–143, Jan. 2014.

[38] K. Pruhs and C. Stein, “How to schedule when you have to buy your
energy,” in Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques. Berlin, Germany: Springer, 2010,
pp. 352–365.

[39] S. Jamalabadi, C. Schwiegelshohn, and U. Schwiegelshohn, “Commit-
ment and slack for online load maximization,” in Proc. 32nd ACM Symp.
Parallelism Algorithms Architectures, Jul. 2020, pp. 339–348.

[40] N. Bansal, H.-L. Chan, and K. Pruhs, “Competitive algorithms for due
date scheduling,” Algorithmica, vol. 59, no. 4, pp. 569–582, Apr. 2011.

[41] L. Chen, F. Eberle, N. Megow, K. Schewior, and C. Stein, “A general
framework for handling commitment in online throughput maximiza-
tion,” in Proc. IPCO, 2019, pp. 1–28.

[42] K. Agrawal, J. Li, K. Lu, and B. Moseley, “Scheduling parallelizable
jobs online to maximize throughput,” in Proc. Latin Amer. Symp. Theor.
Informat. Cham, Switzerland: Springer, 2018, pp. 755–776.

[43] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in distributed
machine learning clusters,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Apr. 2018, pp. 495–503.

[44] Y. Azar, S. Leonardi, and N. Touitou, “Flow time scheduling with
uncertain processing time,” in Proc. 53rd Annu. ACM SIGACT Symp.
Theory Comput., Jun. 2021, pp. 1070–1080.

[45] Z. Han et al., “SPIN: BSP job scheduling with placement-sensitive
execution,” IEEE/ACM Trans. Netw., vol. 29, no. 5, pp. 2267–2280,
Oct. 2021.

[46] C. Chekuri, S. Khanna, and A. Zhu, “Algorithms for minimizing
weighted flow time,” in Proc. STOC, 2001, pp. 84–93.

[47] N. Avrahami and Y. Azar, “Minimizing total flow time and total
completion time with immediate dispatching,” Algorithmica, vol. 47,
no. 3, pp. 253–268, Mar. 2007.

[48] R. Urgaonkar et al., “Dynamic service migration and workload schedul-
ing in edge-clouds,” Perform. Eval., vol. 91, pp. 205–228, Sep. 2015.

[49] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in Proc. 35th Annu. IEEE Int. Conf. Comput.
Commun. (INFOCOM), Apr. 2016, pp. 1–9.

[50] R. Zhou, Z. Li, C. Wu, and Z. Huang, “An efficient cloud market
mechanism for computing jobs with soft deadlines,” IEEE/ACM Trans.
Netw., vol. 25, no. 2, pp. 793–805, Apr. 2016.

[51] Z. Wang, J. Ye, and J. C. Lui, “An online mean field approach for hybrid
edge server provision,” in Proc. MobiHoc, 2021, pp. 131–140.

[52] L. Liu, H. Tan, S. H.-C. Jiang, Z. Han, X.-Y. Li, and H. Huang,
“Dependent task placement and scheduling with function configuration
in edge computing,” in Proc. Int. Symp. Quality Service, Jun. 2019,
pp. 1–10.

Chi Zhang received the B.Eng. degree (Hons.) in
computer science and technology from the Univer-
sity of Science and Technology of China (USTC)
under the Talent Program in computer and informa-
tion science and technology in 2017, where he is
currently pursuing the Ph.D. degree with the School
of Computer Science and Technology. His main
research interests are data center networking, cloud
computing, and algorithms.

Haisheng Tan (Senior Member, IEEE) received the
B.E. degree (Hons.) in software engineering and
the B.S. degree (Hons.) in management from the
University of Science and Technology of China
(USTC), and the Ph.D. degree in computer science
from the University of Hong Kong (HKU). He is
currently a Professor at USTC. He has published
over 80 papers in prestigious journals and con-
ferences, mainly in the areas of AIoT and edge
computing. His research interests include algorithms
and networking. He recently received the Best Paper

Award in WASA’19, CWSN’20, PDCAT’20, and ICAPDS’21.

Haoqiang Huang received the B.Eng. degree in
computer science and technology from the Univer-
sity of Science and Technology of China in 2019.
He is currently pursuing the Ph.D. degree in com-
puter science and engineering with the Hong Kong
University of Science and Technology. His research
interests include online algorithm and algorithm on
massive data set.

Zhenhua Han received the B.Eng. degree in elec-
tronic and information engineering from the Uni-
versity of Electronic Science and Technology of
China in 2014 and the Ph.D. degree from the
University of Hong Kong (HKU). He currently
works as a Researcher at Microsoft Research (Asia).
His research interests include cloud computing,
cluster scheduling, machine learning systems, online
algorithms, and stochastic optimization. Many of
his works have been published in top venues,
such as USENIX OSDI, IEEE INFOCOM, and
IEEE/ACM ToN.

Shaofeng H.-C. Jiang received the Ph.D. degree
from the University of Hong Kong. Before, he joined
PKU, he worked as a Post-Doctoral Researcher
with the Weizmann Institute of Science and then
as an Assistant Professor with Aalto University.
He is currently an Assistant Professor with the
Center on Frontiers of Computing, Peking Univer-
sity. His research interests are generally theoretical
computer science, with a focus on algorithms for
massive datasets, online algorithms, and approxima-
tion algorithms.

Guopeng Li received the B.Eng. degree in com-
puter science and technology from Central South
University in 2020. He is currently pursuing the
Ph.D. degree with the University of Science and
Technology of China (USTC). His main research
interests are cloud computing, edge computing, and
algorithm design.

Xiang-Yang Li (Fellow, IEEE) received the
bachelor’s degree from the Department of Com-
puter Science in 1995, the bachelor’s degree from
the Department of Business Management, Tsinghua
University, in 1995, and the M.S. and Ph.D. degrees
from the Department of Computer Science, Univer-
sity of Illinois at Urbana–Champaign, in 2000 and
2001, respectively. He was a Full Professor with the
Illinois Institute of Technology, Chicago, USA. He is
currently a Full Professor and the Executive Dean of
the School of Computer Science and Technology,

USTC, Hefei, China. He is an ACM Fellow and an ACM Distinguished
Scientist. He published a monograph Wireless Ad Hoc and Sensor Networks:
Theory and Applications. His research span artificial intelligent Internet of
Things, mobile computing, data sharing and trading, and privacy.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 27,2023 at 15:30:39 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

